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CHAPTER I 

INTRODUCTION 

In this report, the scattering and diffraction problem of a plane electro- 

magnetic wave normally incident on a perfectly conducting infinite cylinder in a 

homogeneous isotropic medium and polarized parallel to the cylinder axis is investi- 

gated. The boundary of the cylinder is assumed to have a continuous tangent 

everywhere. The mathematical problem involves finding a solution of the scalar 

wave equation which satisfies both the boundary condition and the radiation condi- 

tion at infinity. 

Exact solutions are available, through the method of separation of variables, 

for only a few simple shapes such as the circular, the elliptic o r  the parabolic 

cylinder. 

obtaining far field expressions of scattered and diffracted waves for more general 

The objective of t h i s  report is to study an approximation method of 

shapes of the cylinder cross-section by means of conformal mapping. 

In the past, various approximation methods have been developed for low 

and high frequency scattering. In the case of low frequency scattering, the 

characteristic dimension of the body is assumed to be much smaller than the 

wavelength. Van Bladel(l) introduced a quasi-static method that gives only the 

initial term of an expansion in a series of powers of logk and k (k= wave number). 

This te rm is not dependent on the geometrical shape of the cylinder, but only 

on its size. 

A considerable effort has been devoted to the solution of the problem of 

( 5) , Franz and Deppermann , (3) ,  (4) high frequency scattering. (MacDonald"), Fock 

Franz('), KelleJ7), Ursell(*), Goriainov('), Goodrich (10) , Weinstein and Fedorov (11) , 

1 
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(12) and Felsen 

dimension of the scattering body is assumed large in comparison with the wave- 

1 e ng th. 

). In the case of high frequency approximations, the characteristic 

When a high-frequency wave is incident on a perfectly conducting body, 

a first approximation is found using the method of physical optics. In this method 

one assumes that the current on the surface at a point in the illuminated region 

is the same as would be induced on an infinite plane occupying the position of the 

tangent plane, and is identically zero in the shadow region. It is well known 

that this approximation yields a very poor picture of the behavior of the field 

in the shadow region and near the shadow boundary. 

An improved approximation method for the behavior of the field near the 

shadow boundary is that of Fock. He assumes that the boundary and the wave 

equation near the shadow boundary can be approximated by a parabola and a 

parabolic equation, respectively. 

the geometrical optics te rm to an exponentially decaying field, the so-called 

creeping wave, as the observation point moves across  the shadow boundary. 

Fock's method requires continuity of curvature of the boundary. 

This method gives a smooth transition from 

Another improved method of approximation for high frequency has been 

developed by Keller and his colleagues in their geometrical theory of diffrac- 

tion. The theory postulates that, in addition to the incident and reflected rays 

of geometrical optics, there exist diffracted rays. These rays a r e  produced 

when an incident ray hits a kink o r  vertex on the scattering surface, o r  when 

it impinges tangentially on a smoothly curved boundary. 

amplitude depends on the incident field a s  well as on properties of the surface 

Their excitation 

2 
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in the immediate neighborhood of the point of diffraction. Consequently, the 

diffraction coefficient (the ratio between the diffracted field and the incident 

field near the point of diffraction) may be determined from the rigorous solu- 

tion of canonical problems. The latter are simplified problems in which occur 

only the local properties of the field and of the scattering surface. 

Diffraction coefficients of both the shadow boundary of the curved sur -  

(13) 
face with continuous curvature, and the wedge are known (Oberhettinger 

and Keller 

edgeA with discontinuity in derivatives of the tangent, that is, discontinuity in 

curvature o r  in its derivatives. 

(14 );but few people have studied diffraction problems of waves by an 

Weston (15)'(16) obtained the effect of a discontinuity in curvature in 

high frequency scattering. He studied the case in which the point of discontin- 

uity in curvature is in the illuminated region and the total field on the boundary 

satisfies the Neumann boundary condition. 

In the above brief review of past work, none of the approximation 

methods attempt to obtain desired solutions by mapping the given geometry of 

the scatterer surface into a geometrically simpler one. 

In the past, conformal mapping has been extensively used to simplify 

the geometrical shape of the given boundary, in order to solve boundary value 

problems for  both Laplace's equation and the waveguide problem (the reader 

-1. -,- 
The term 'edge' is used in a general sense. Any point where the boundary 

has  a discontinuity in the curvature or in its derivatives is called an edge. 

3 
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* 

is referred to papers by Rice (1V, (18) , Weinstein (19) , Mittra(20) and M e i a e  (21)) . 

In this report, as specific examples, Garabedian's integral equation 

applied to study effects of certain irregularities of the boundary, such as 

discontinuities in curvature o r  high order derivatives, o r  smooth, shallow 

corrugations, on the scattering and diffraction of waves. 

4 

The approximation method which has been applied in the theory of waveguides is 

essentially concerned with quasi-static techniques, that is, low frequency 

approxima tion techniques. 

(22) Recently Jones showed that the asymptotic solution of the wave equa- 

tion, which is obtained by the W. K. B. J. L. method for high frequency scattering, 

is invariant under conformal mapping, provided that the mapping function is 

conformal everywhere including at the boundary (see Section 2.2). 

(23) Garabedian gave one of the first convincing proofs of the usefulness 

of the application of conformal mapping to scattering and diffraction by a body 

having singularities. The success of the method which he developed depends on 

the fact that the derivation of a Fredholm integral equation governing the scattered 

field does not require the mapping function to be conformal on the boundary. 

Furthermore, the characteristics of the geometry of the boundary are 

reflected in the behavior of the mapping function there. Mathematically, the 

order of singularity of the mapping function on the boundary is determined by 

the property of the geometry of the boundary itself ( see  Warschawski's work 

and Section 5 .2  of this report for  further details. This property enables us to 

study the effect of geometrical irregularities of the boundary on diffracted 

fields. 

(24) 

J 

is 
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We shall confine our attention entirely to the case  of Dirichlet boundary 

The extension of the conformal mapping method to the case of condition. 

Neumann boundary condition is discussed in Chapter 6. 

5 
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E 
-in 

CHAPTER 11 

REPRESENTATION OF SCATTERED FIELDS 

In this chapter, a boundary value problem of the wave equation for a 

scattered field is formulated. After applying conformal mapping, Garabedian's 

integral equation is derived and the method of solving the integral equation is 

discussed. Both the derivation of Garabedian's integral equation and the defini- 

tion of the norm of the kernel a r e  a little different from the derivation and 

definition given in Garabedian's original paper (23) . 
The rationalized M. K. S. system of the units is used and the time 

-iwt dependence factor e is omitted. 

2.1 Formulation of the Problem 

ikE Let the plane wave E = ^ze be incident on a perfectly conducting - in 

cylinder with an arbi t rary shape of the cross-section. 

7) Y 

r 
P 

- 

E 

C W 

Dw domain Dz domain 

FIG. 2.1: T H E  MAPPING OF THE BOUNDARY 
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The scattered field -Es must satisfy the Maxwell equations, 

V x E S =  iwp H , VxH =-LIE E 0 - s  - S  0-sJ 

Sommerfeld's radiation condition and the boundary condition 

(2.1) 

on the boundary C . (2.2) 
A 

W 
n x ( E  +Es)=O 

7 n  

Here E and p a r e  the permittivity and the permeability of free space, 

respectively. 

0 0 

In the polar coordinate system Eqs. (2.1) and (2.2) can be reduced to 

scalar forms in te rms  of the z component of the scattered field E 
-S 

nl 
E s u  

sz 

H s z  = E s p = E s B = O ,  

and u is the solution of the following boundary value problem; 

# i k E  u = -e on C 
W 

l im pq2 [$ -id = 0 
p->aO 

(2.3) 

(2.4) 

where k = w v K  is the wave number. 

Up to this point the derivation of the equations has been straightforward 

involving merely the substitution of terms. However, the solution of this boundary 

n 
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value problem with a n  arbitrary shape of the boundary cannot be obtained by the 

conventional method of separation of variables. 

A s  an alternate approach, let  us conformally map the domain external 

into another domain where the Green’s function satisfying the prescribed to C 

boundary condition is known. The point at infinity in the original domain is mapped 

into the point at infinity in the transformed domain, and the transformed boundary 

is assumed to be an analytic contour (that is, an infinitely differentiable contour). 

The transformed domain and boundary a r e  denoted as D and C respectively 

(see Fig. 2. l), and the mapping function as F(z). 

W 

Z Z 

If the original boundary C is a closed piecewise-smooth contour, then 
W 

the mapping function F( z) is a single valued function everywhere including the 

boundary C 

ponding to geometrical singularities of C 

curvature o r  in its derivatives). Furthermore, the order  of singularity of the 

mapping function is determined by the behavior of the geometry of the original 

boundary (the scattering body). For  more details on properties of the mapping 

function, the reader is referred to the works done by N e h ~ i ( ~ ~ ) a n d  Warschawski 

and has isolated singularities at all points on the boundary cor res -  
Z’ 

(e. g. kinks, o r  discontinuities in 
W 

(24) 

Since the point at infinity in D is conformally mapped into the point 
W 

at infinity in D the mapping function behaves as 
Z’ 

W =  F(z) = z + O ( - )  as Z--> 00 . (2.8) 1 
z 

Set 

8 
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Then, u(z) satisfies the transformed wave equation and the transformed boundary 

condition. Since w z as z ->m (see Eq. (2.8)), the radiation condition is 

invariant. Therefore, the original boundary value problem of Eqs. (2.5), (2.6) 

and (2.7) is transformed into 

2 2 2 
(2.10) z ,  

u=O inD a u  i a u  
2 r ar a r  

+ -  - + 1 au + k  
r2 ae2 

ikRe F(z) u =  -e 

lim r1J2 b: - - i k u  J = O .  
IL> 00 

onC , 
Z 

Once we obtain the solution u(z) of the transformed boundary value problem, 

the far field expression of c(w) can be easily obtained since the mapping 

function becomes an identity as z -> 00 . 

2.2 Remarks on the Transformed Equations 

The transformed boundary value problem of Eqs. (2. lo), (2. 11) and 

(2.12) is mathematically the same as the problem of radiation from a cylinder 

in an inhomogeneous medium. 

The transformed boundary value, -exp {ik Re F( z) \ , introduces an 

2' 
equivalent source on the new boundary C The behavior of F(z) on the 

boundary is determined by that of the geometry of the original boundary. This 

property will be used in Chapter 4 to study effects of a geometrical singularity 

of the scattering body in high frequency scattering. 

9 
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The transformed wave equation introduces an inhomogeneity - 121 in 

the medium. In case of k=O (Laplace's equation), the effects of inhomogeneity 

dw for k #  0 (the wave equation) in the medium disappears. The role of 

can be effectively demonstrated in te rms  of the theory of ray tracing. This 

I XI 

theory is concerned with the asymptotic solution of the wave equation in  case 

Under conformal mapping, the following three phenomena can be 

observed: 

a) The optical length is invariant 

V 

b) The amplitude of ray is invariant 

The amplitude of ray in the original domain is inversely proportional to 

the linear distance Aw between two adjacent rays .  In the transformed domain 

the amplitude of ray is inversely proportional to - A 

linear distance between two adjacent rays  in the transformed domain. 

w h e r e a  Z is the 13 z 

Since 

the amplitude of ray is invariant under conformal mapping, 

c) Curvature 

of the contour C and - of cZ are 1 
R 

Z 
R The two curvatures - 

W 
W 

related by 

10 



& 

T H E  U N I V E R S I T Y  O F  M I C H I G A N  
57 80-6 -T 

c 

In Eq. (2.13) 

A dw 1 
(2.14) 

is the curvature of the ray bent by the inhomogeneity 1 
means of conformal mapping, the curvature of the boundary C 

into the curvature of the new boundary C 

I .  Therefore, by 

is decomposed 
W 

and the curvature of the ray. 
Z 

These three properties were first observed by Jones(22). He  derived 

dw >> 1 by the W. K. B. J. L. an asymptotic solution of Eq. (2.10) in the case k 

method, and this solution was shown to be invariant under conformal mapping 

because of the three properties discussed above. For details of Jones' work, 

I GI 

(22) the reader is referred to his paper 

The properties a, b and c fail when the mapping function is not con- 

formal. 

kink o r  a discontinuity in curvature. To handle such geometrical irregularities 

Therefore, Jones' method is not applicable when the boundary has a 

of the boundary in scattering problems, an integral equation method is developed 

in the following section. 

2 .3  Integral Representation and the Solution 

In this section Garabedian's integral equation is derived and its solution 

is discussed. 

Green's function G( gl, r )  in the D domain, satisfying the Dirichlet 
Z 

boundary conditioq is defined by the following three equations: 

11 
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2 2 V G+k G = - 6 ( 1 ~ ~ - g  I)  

G=O 

l im r 
r ->m 

in D 
Z 

on C 
z (2.15) 

Once Green's function is known, u(z), which satisfies Eqs. (2. 10)' (2.11) and 

(2.121, can be represented as an integral equation by Green's theorem. 

This is Garabedian's integral equation. The first t e r m  in the right-hand 

side of Eq. (2.16) is known. The kernel G(gl, - r) fls 1 2-11 of this equation 
L J 

-512 is of order  r as r ->m, and is bounded everywhere except at the point 

r = r - -1 

is a Fredholm integral equation of the second kind. 

where the Green's function has a logarithmic singularity. So Eq. (2.16) 

It is interesting to note that the first (known) te rm of Eq. (2.16) satisfies 

the inhomogeneous Dirichlet boundary condition given by Eq. (2.11). Neglecting 

the effects of inhomogeneity - dw Idz I 
a field radiated from C 

value. The second te rm of Eq. (2.16), on the other hand, satisfies an homogeneous 

Dirichlet boundary condition, and represents the effects of inhomogeneity I 
in the medium on the propagation of the radiated and scattered fields. 

, this te rm can be interpreted physically as 

due to the source given by the transformed boundary 
z' 

dw 

Eq. (2.16) can be solved by a successive approximation, provided that 

the iterated ser ies  (the Neumann series) converges. Let us  discuss the conditions 

12 
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2 
of convergence in L space (for more detail, the reader is referred to Mikhlin’s 

book(26)). The inhomogeneous term of Eq. (2.16) is square integrable in the D 

domain if this te rm is multiplied by the factor (kr )-I . 
Z 

1 

where 

The Neumann series solution of Eq. (2.17) converges if 

P P  P P  
2 

dxdy k dxldyl< 1 . (2.19) 
ID- D- 

When C is geometrically s imilar  to C such that 
W z 

where r (or r ) is a polar coordinate representing C (or Cw), then 

1 1% I -1 I times the characteristic tangents everywhere (no kinks), then 

W Z 

F( z) - z is of order 6 for a small 6 .  Furthermore, i f  C has continuous 
W I i  

(27) 
dimension of C is also of order 6 (Warschawski ). Let the mapping z 

function given by Eq. (2.8) be rewritten as 

where f( z) is a dimensionless quantity. 

Then Eq. (2.18) becomes 

13 
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and ll"K1 is of order k6 for a small k6 . 
If k6 is sufficiently small such that Eq. (2.19) is true, then the solution 

of Garabedian's integral equation is given by the Neumann series: 

where 

and % (r ,;) is determined by the recurrence relationship, n 1  

d 

K (r r) is called the n-th iterated kernel. n-1 - 

14 



. 
T H E  U N I V E R S I T Y  O F  M I C H I G A N  

57 80 -6 -T 

CHAPTER 111 

SCATTERING OF A PLANE WAVE BY AN ALMOST CIRCULAR CYLINDER 

For a specific example of the conformal mapping method, the scattering 

of a plane wave by an almost circular cylinder with periodic, smooth and shallow 

corrugations is studied. Later  this result is compared with that of Clemmow and 

(28) Weston . 

3.1 The Mapping Function 

In this section, a simple method of obtaining the function conformally 

mapping an almost circular domain into a circular domain is briefly discussed 

without proof. Details of this method can be found in the books by N e h a r i  

( 29) or  Kantorovich and Krylov . 

(25) 

Y 

w-plane z -plane 

FIG. 3.1: MAPPING OF AN ALMOST CIRCULAR DOMAIN 

15 
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Let the given almost circular boundary C be represented by the polar 
W 

equation 

r(e) = R + r  (6)  , (3 .1)  P 

scattering problem of a plane wave by an almost circular cylinder with periodic, 
~ 

and assume that r (0) is piecewise continuous, bounded such that 
P 

[rJ+a << 1 . 
r (e) is represented by a Fourier series; 
P 

1 smooth and shallow corrugations is considered. 

(3 .2)  

a3 

r (6)  = x(a cosne+b  sin.&) . (3.3) n n n= 1 P 

In this case, the mapping function, which maps the domain D 

circle C into a domain D exterior to C is given by 

exterior to a 
Z 

Z W W' 

w = F(z) = z f  2 + a h 2 )  . 
n = l  , z ,  

(3 .4)  

On the boundary I z I  =R, the real part of the mapping function is given by the 

closed form; 

ReF(z)  "= R c o s 8 +  @ ) - s i n e .  7 (e) (3 .5)  P 1 
where 

t i l  
2 r ( t )cot  - dt . 1 

P 27T 
F (e) = - P. V. 

3 . 2  Scattering by an Almost Circular Cylinder 

A s  a n  example of application of the conformal mapping method, the 
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I -  

FIG. 3.2: AN ALMOST CIRCULAR CYLINDER WITH PERIODIC, SMOOTH 
AND SHALLOW CORRUGATIONS 

Let the boundary C of the scattering body be represented as 
W 

r=R+acos.!o+bsin !e (3.6) 

(note that for 1 = 2, C is an elliptic cylinder). Here the perturbation factor 
W 

kd = k \ l a 2 c b 2  (3.7) 

is assumed to be sufficiently small such that both kd and the norm of the 

kernel of Garabedian's integral equation (see Eq. (2.19))is much smaller  than 

unity. Then neglecting (kd) and higher order terms, the transformed field 2 

u(r ) is given by the first and a part of the second te rm of the Neumann series -1 
17 
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(3.8) 

where 

and 

for  r > r . 1 

(30) 
Substituting the expansion form of e ‘Os e (Magnus and Oberhettinger ) 

viz. 

00 
n in8 exp ikRcos8 = i e J ~ ( ~ R )  { 1 n=-m 

and Eq. (3.12) into (3.91, ucircle is given by 

18 

(3.13) 
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U is the field resulting from the scattering of a plane wave by a circular 
circle 

cylinder of radius R. u (r ) can be obtained by a similar method, viz. 
P1 -1 

oo H (krl) n inel n u (r)=--z 1, i e  (') , [it k(a+ib) J n+ 1-1 
n= -00 H") (kR) n 

(kR) P1 -1 2 

1 

-i-' k(a-ib) 
Jn - 1+1 (3.14) 

u 

the following integral formula 

can be evaluated by substituting Eqs. (3.41, (3.13) into (3.11) and using 
p2 

where C and D a r e  any cylindrical functions. Thus 

(3.16) 

u and u represent the perturbed field. Using the relationship (see 

Magnus and Oberhettinger ). (30) 
p1 p2 

the sum of u and u is given as 
p1 p2 

19 
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1 
T in6 

ikr -i - e 

n 
2 (1) n=-oo H (kR) 

-1 (a-ib)/R 

(l) (kR) Hn-t 

+ i  (3.18) 

Since F(z) of Eq. (3.4) -> z as z -> 03, the mapping function becomes 

an identity for the far field. Therefore, the far  field scattered by an almost 

circular cylinder with periodic, smooth and shallow corrugations is given by 

where 

radius R, and (p ) is the perturbed field given by 

is the scattered field of a plane wave by a circular cylinder of circle 

P -1 

-1 (a-ib)/R 

H( l )  (kR) 
+ i  

n - l  

20 

(3 .20)  
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(28) The solution in Eq.(3.19) agrees with the result of Clemmow and Weston 

who obtained the same solution by means of aperturbation and Fourier transform 

method, and they also obtained the asymptotic form of u (e ) for kR >> 1. 
P 1  

In their original paper, the discussion about the limit of validity of the solution 

(3. 19) was based on physical interpretation of the solution. But from the study 

of the iterated solution of the integral equation (2. 33), it is now c lear  that the 

conditions for validity of the solution of (3.19) are not only k 6  << 1 but also 

IlEll << 1 as given by Eq.(2.19). 

l -  
I 

21 
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CHAPTER IV 

EFFECTS OF EDGES IN HIGH FREQUENCY SCATTERING 

In this chapter, the problem of diffraction by edges with discontinuities in 

curvature o r  in its derivatives is handled by the conformal mapping method. It 

is found that the dominant contribution of the edge-effects on diffracted fields 

is given in the form of a contour integral. The behavior of the mapping function 

near the edge, necessary for the evaluation of the contour integral, is discussed 

in Section 4. 2. 

4.1 Integral Representation of Effects of Edges 

When a wave hits an edge, the incident ray produces infinitely many 

diffracted rays (Ke l l e~? '~~) ) .  This kind of diffraction problem can be handled by 

the integral equation method derived in Chapter 2. 

A s  a first step, the given boundary with a finite number of edges is mapped 

into a new boundary which is free of edges. The transformed function of the 

scattered field, 

tion. This equation is derived in Chapter 2 and is given as 

u(-rl), is then given as a solution of Garabedian's integral equa- 

where 

(4.2) 
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rc, 

The kernel function K is given by Eq. (2.22) as 

(4.3) 

and d in the above equation is defined by Eq. (2.20) as the maximum linear 

distance between the original and the transformed boundaries. 

It is shown in Section 2.3 that Eq. (4.1) can be solved by a successive 

approximation method, provided that kd is sufficiently small s o  that 

I lg II< 1 (see Eq. (2. 19)). 

At least in principle, kd can be chosen arbitrarily small. Formally, 

this can be accomplished in the following way. Choose the transformed boundary 

C as identical to the original boundary C except near the edge, where C 
Z W W 

is perturbed so that kb is as small as desired. In certain cases, by perturbing 

the original boundary, the new boundary may have points of discontinuity in 

derivatives of higher order than that of the edge of Cw. It will be shown later 

(Chapter 6) that the effect of a discontinuity in the n-th derivative of the tangent 

on the diffracted field is of order k-n(kpl) . Therefore, the effect of the new 

discontinuity in the higher order derivative of the tangent may be neglected com- 

pared to  the effect of the original edge of the scattering body. 

- 1/2 

Unfortunately for given C and C a simple local mapping function 
Z WJ 

near the edge is not available. Therefore at the present state, it is assumed that 

the boundary of the scattering body is almost circular. Then map C into a 

circle C and use the technique of Section 3.1 to obtain the desired mapping 

W 

Z 

function approximately. 
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d 

The norm of K in Eq. (4.1) is of order  kd and can be much smaller  

than unity for a sufficiently small kd (see Section 2. 3). Then the solution of 

Eq. (4.1) can be obtained by a successive approximation method. W e  now examine 

the first (known) term in Eq. (2.23) when the wavelength of the incident wave is 

small  compared to the minimum radius of curvature of the scattering body. 

In order  to examine the asymptotic behavior of the first te rm u (r ) 
0 -1 

aG for high frequencies, it is convenient to use the asymptotic form of - derived 
an 

in Appendix A, viz. 

where 

and 

for kR>> 1 , 

Pn = 

c; = 

(-el+e - 7r +2n7r)M 

( e , - e + g  + 2m)M 2 

(4.4) 

(4.5) 

(4.6) 
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( 4) [Bi(t) + iAi(t) is an Airy function, and # c )  is the Fock function . w,(t) = 1 
Using the asymptotic form of Green’s function, an approximate expres- 

sion of u (r ) can be obtained by direct substitution of Eq. (4.4) into (4.2). 
0 -1 

7r i k r  -i- 
[8+.?i;:]+O(k6)2 (4.7) 

where 

and 

ie 
g ( @ r i k 6  Re f(Re = Z) (4.10) 
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is related to the real part of the mapping function on the boundary (see Eq. (2.21)). 

For kR >> 1, the contour integrals of and 5::: can be asymptotically 

evaluated by the saddle point method (Vander ~ a e r d e n ' ~ ~ ) ) .  Set 

and 

BY Eqs. (4. l l a  and b), Eqs. (4.8) and (4.9) can be rewritten as 

and 

In the (or 7::) plane, the integrand of Eq. (4.12) (or (4.13)) has two 
&: 

kinds of branch points; one is due to the saddle points e = 0 o r  - = 0) , 
and the other to  the branch points of g(8). The branch points of g(8) are in 

(dB de 

turn due to the geometrical singularity of the surface of the scattering body. 

By choosing branch cuts parallel to the real axis in %(or 3) plane 

A and deforming the contour of integration, o-(or %) can be written as a sum 

of branch cut integrals. Branch cut integrals due to the saddle points represent 

the specularly reflected field and the fields diffracted by the shadow boundary 

(see Appendix B and Goriainov's paper ). The branch cut integrals (9) 

due to singdarit ies of g(e) represent the effects of an edge of the scattering 
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body in the first term of the Neumann series, These various sources of the 

scattered and diffracted fields a r e  in agreement with the predictions of the 

geometrical theory of diffraction (see Keller's paper (31) ). 

As discussed in Chapter 2, the iterated terms in the Neumann series 

represent corrections to the diffracted fields due to the change of the ray paths 

under the conformal transformation. We now consider only the fields diffracted 

by the edge, and postpone the discussion of corrections arising from the iterated 

terms until Chapter 6. Then the fields diffracted by an edge are given as 

where 

and Cd and C; d 

Equations 

are branch cut contours due to the branch points of g(e). 

(4.15) and (4.16) can be evaluated once the function g(0) is 

known. g(O)/ik is the real part of F(z) - z on the boundary, and it will be 

investigated in the next section. 

The Fock functions ?( f )  in Eqs. (4.15) and (4.16) represent physically 

the current induced on the circular cylinder by the incident plane wave (see 

Goodrich'")). 2c) admits a n  expansion in a series of residues for f > O  . 
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where t 

various papers (e. g. Fock’s paper ). For a large c,  f(c) has the following 

is the s-th root of w (t) and numerical values of t a r e  given in S 1 S 
(3) AI 

asymptotic behavior : 
w 3  

(4.18) 

The expansion form of the residue ser ies  Eq. (4.17) represents diffracted fields 

in the shadow region and they are called creeping waves. Near shadow boundaries, 

the following relations hold 

5 i- 
H 3 4  When the argument f (C)  has a large negative value, e f (C)  becomes a physical 

( 9) optics term by substituting Eq. (4.20) into Eq. (4.18) (see Goriainov’s paper ). 

Therefore, in the following chapters exp { ikR(+8+ T ) }  .?{(=M(+B + - ”)> i n  

ikR cos 8 Eqs. (4.15) and (4. 16) is replaced by i ts  asymptotic form 2iM cos 8 e 

- 2  - 2  

whenever the argument of gc) has a large negative value. 

4.2 Behavior of the Mapping Function Near the Edge 

In this section, behavior of the function g(8) is examined. g(8) i s  

defined by Eq. (4.10) and by Eq. (3.5) a s  
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i6 
g(6) = ik6 Re f( z=Re ) 

=ik  Lcos6. r (6) - s i n e .  T (64 
P P 

(4.21) 

- 1 Sr rJ t )  - cot-dt t %  . 
2 r (6) =- P.V. 

P 27l 
- 
r (6) exists at every point where r (6) satisfies the Lipshitz condition. 

P P 

Furthermore, if r (6) has a discontinuity in the n-th derivative with 
P 

respect to 6 at 6 = 6  then 2 (0) behaves as (6-6 )n-lLog (6-6 ) near 

6 = 8  So the degree of singularity of the function g(8) is determined by the 

degree of singularity of the boundary of the scattering body. For  more details, 

the reader is referred to Warschawski's paper . This property enables us to 

study the effects of discontinuities in curvature and in its derivatives by means 

of the integral equation (4.14). 

2 
0' P 0 0 

0' 

(24) 

As a specific example, let us consider a convex contour constructed by 

smoothly joining together a semicircle and a semiellipse. 

FIG. 4.2: A CONVEX, CLOSED CONTOUR WITH TWO DISCONTINUITIES IN 
CURVATURE 
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[= a 

2, 2 4 
where 6 -a E and higher order te rms  are assumed to be negligible. 

Let us map C into a circle with radius R which is given by the 
W 

following equation 

Then 

The evaluation of F (e) needs a few steps of computation. 
P 

t -8  
dt r (t) .  cot - 2 27rF (e) = P.V. 

P 

(4.25) 

2 t-e 2 
= -P. v. a€ 

2 
dt sin (t-6 ) *  cot- . 

d 2 

By making the change of variables 

9 - e = y  d t-e = , 

and 

t-e - i + c o s x  cot- - 2 s i n x  ' 
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the integrand of Eq. (4.25) becomes 

2 t-e 2 1 2  sin (t-9 ) cot 2 = cos y(sinx+ sin x) 
d 

(4.26) 
2 3 2 

sin x 
2 cos x+cos x 

+s in  y - sin 2y(cos x+ cos x) . 

Substituting Eq. (4.26) into Eq. (4.25) and carrying out the integration, ;$e) 

becomes 

-2cos (e - pd) + sin 2(e - fidg . - 
rp(0) = - 47r 

This result will be applied in the next chapter to the problem of diffraction by 

a discontinuity in curvature. 
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CHAPTER V 

FIELDS DIFFRACTED BY EDGES 
WITH DISCONTINUITIES IN CURVATURE 

In this chapter fields diffracted by edges with discontinuities in curvature 

are obtained by asymptotically evaluating the contour integral derived in Section 

4.1. First, in Section 5.1, various branch points are found. In Sections 5.2 

and 5.3,  the case when the edges are far from the shadow boundary, is considered. 

In Sections 5.4 and 5.5, the edges a r e  taken to lie at the shadow boundaries. The 

summary of the results is tabulated in Section 5.6 and the physical meaning of these 

results is discussed in Chapter 6. 

5.1 General Solution 

FIG. 5.1: THE SCATTERING BODY WITH TWO EDGES 
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Let the plane wave be incident on a perfectly conducting cylinder with two 

points of discontinuities in curvature as shown in Fig. 5, 1 .  It is assumed that 

rZfl,L 0 and 7rz fl 2- . A t  both junction points fl = fl 
2 

respectively, tures of the semicircle and the semiellipse are - and - 

7r 
and fl = fl -7r, curva- d 2  d d 

1 -E 1 
a a 

where E is the eccentricity of the ellipse. 

In order to apply the contour integral representation Eq.(4.14) of the edge 

effects, the boundary C in Fig.5-1 is assumed to be almost circular (see 
W 

Section 4.1). 

The real part of the mapping function on the bamdary is obtained in  

Section 4 . 2  and g(8) is given as - 
(5.1) 

where 

2 
E [sin2(e - b  ) -L] r (8) = - for fl -n< e < pd P 2 d 4  d - -  

2 

8 
- E R  _ - -  

and 

g(8) is a periodic function with the period 27r, and has branch points at 8 = fld 
and 8 = fl - 7r. The branch point at 8= @ 

at e= 6, on the surface of the scattering body, and the other branch point due 

to the discontinuity in curvature at 8 = pd-7r (see Fig. 5-1). 

is due to the discontinuity in curvature 
d d 
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Substituting Eq. (5.1) into (4.14), the fields diffracted by the two edges a t  

the position of the circle-ellipse join are given by the following branch cut 

integrals 

(5.3) 

where 

and g(0) is given by Eq. (5.1). The contours C 

contours near  the branch points of g(8). 

and C$ a r e  branch cut d 

Various branch points of the integrand of (T in the range of integration 

can be easily found. First the saddle points are solutions of 

Solving Eq. (5.6) it can be shown that the saddle points lie at  

(5.7) 
I e = g1+ F - 2 n n  

s n  

where n = O , l , 2  ,...,. 
7r The argument c = M( - -0 )  of the Fock function (see Eq. (4.6)) near these 2 

saddle points is positive except for  the case n=O. When n=O, the argument 
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a 
c=M(z -8  

discussed in Section 4.1, when the argument of the Fock function becomes a 

) = - Mfi goes to negative infinity as M->m unless fi = 0. As so 1 1 

large negative value, the Fock function should be replaced by its asymptotic 

form. Unless fi "0, the new saddle point is a solution of 1 

d? d 
de d€J 1 - = -im - [case - cos ( g  

The new saddle point is 

Therefore, the saddle point l ies  a t  

I 
~ s n = $ l + ~ -  2na where n=1,2,.. . ,  

and 

a e s o  = g + -  1 2 for fi, o 

(5.8) 

(5.9) 

e l  = - + -  4 a 
so  2 2 

for  g1>0 .  

The branch points of g( - 8 + 8, + I) lie at 

= f i  - f  f a - 2 n a  where n=0,1,2... ,  (5.10) 'dn 1 d 

due to the edge of the scattering body at  g=pd, and at 

e' = e  -a (5.10') dn dn 

due to the edge at @=@,-a. In the G plane branch cuts are taken parallel to 

the real  axis. 
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r, v(e = G d j  

$ @ = e  ) sl 

@ Re 

- 

FIG. 5.2: F-PLANE 
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FIG. 5.3: %-PLANE 
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In a similar way, branch points for the integrand of e;: can be obtained. 

Solving the following equation 

the saddle points lie at 

(5.12) 
7r 0;: = fi, - + 2n7r where n=Oa 1,2,. . . 

sn 

Near all saddle points given by Eq. (5.12), the argument of the Fock function 

7r 
c=M( - + 8:: ) is positive. g( -0+ 7r + fi ) in the integrand of 2 s n  1 

points at 

8:: = fi, -gd+ 7r2 2n7r where n=O, 1 , 2 , .  . . dn 

due to the edge of the scattering body at fi=$ and at  
d’ 

- 
0:: = 0:: - 7 r  

dn dn 

due to the edge at fi = @ , - 7 r .  

6:: has branch 

(5.13) 

In the “V:K plane branch cuts are taken parallel to L e  real axis. 

The branch cut contours C and C::: which are introduced due to d d 

singularities of the mapping function a r e  rewritten as 

(5.14) 

c = c  + c  + C d l + . . .  d do do 

and 

(5.15) 

(5.16) 

as long as any of these branch cuts of Eqs. (5.15) and (5.16) do not coincide 

with any branch cut due to the saddle point, 
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Since the branch points of the function g(8) are dependent on 9 (the d 

position of the edge), while the saddle points are not, only the positions of the 

branch points of g(8) are changed as the position of the edge is moved. 

Let us evaluate each contour integral asymptotically for high frequency, 

) and the position 
'9, 

in various cases, by changing the observation point ( p  e 1 

of the edge. 

n n 5.2 Case I. T 2 fl1 > 6, - and Pd=# 

In this case the edge at fl= @ is in the illuminated region and this edge d 

can be directly seen from the observation point. Let us first assume that 

n g1 # 2(gd - ), then none of the branch cuts due to the saddle points and 

singularities of the mapping function coincide in G' and '% planes. 

(i) Evaluation of CF( Cdo) 

Near the first branch point 8=8 = - $, +n in the plane, the argu- do 
71 ment of the Fock function t=M(- - + 8 ) is negative, so the function 

e- + ikR(T/2 -e )  ?{c=M(n/2 -8 ) )  i n  the integrand of cr is replaced by its 

2 do 

do asymptotic form near  this branch point. Near 8=8 

-8)-cos e] "i2kRsin- $1 sin($ - - ) - T -  $1 i2kRsin- % cos(,-pd) 4 
2 d 2  2 

where 

(5.17) 
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4 4 
v = - i 2 k ~  s in  - - cos (fld - 2 1 , 2 

f o r I m v < O .  V 
i 5 ~ / 2  e 

7 =  - 
3 4 8, 

4M s in  - cos (fJd - 2 ) 2 

Using Eq. (5.18), the branch cut contour integration of (T at  8=8 do becomes 

where 

d7 
dv Near v=O, - is analytic, but g($,-~) is not and the second order  te rm of 

the two sides of the branch cut are different (see Eq. (5.1) and Section 4.2). 

Substituting Eq. (5. 1) into Eq. (5.20) , IC becomes 
do 

- - 

40 

(5.21) 



. 

c 

Since 

then 

T H E  U N I V E R S I T Y  O F  M I C H I G A N  
5780-6 -T 

2 
) (see Eq. (4. 22) and (4.2311, 2,  1 1-E 

a E - R ( a - -  

2 
1 1 - E  

E - 2E a a  2 2(---) 
- - - E  

M3 kR k (5.22) 

Substituting Eq. (5.22) into Eq. (5,21), o(C ) becomes do 
2 1 1-E 

a a  
(---) ( - c o ~ @ ~ + 2 i s i n @ ~ ) .  cos(@ 

O(Cdo)Z - 
3 

(5.23) 

d o(C 

and is of order l/k. 

) is proportional to the difference of the two curvatures at the join @=@ 
do 

(ii) Evaluation of o(c ) do 

Near 8 = Od0 = fil - ed, the argument of the Fock function 5 = M( - -8 ) 2 do 
7 T -  - 

is positive, and 

where 

T = e  -F do 

Set 
r 1 
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e V for I m v >  0 3 7 =  

+ [l+sinFd] 2M 

57r -i - 
3 
6 

for I m v < O  . 

Using Eq. (5.24) and (5.25), the branch cut integral of (T at e=e’ becomes do 

(TE do )e -i-f M2fl{ 2 ~ = M ( F + $  ‘ d - $  1]* exp { ikR(F+$d-$l )  7r 

exp(i(kR+M ts)($+ fld-fll)) 
wi(ts) 

+ ikRcos($d-7r) I- = M 2  fi2 3 ‘do s=l 

ikR cos (gd-7r) 
I- . e  
‘do 

(5.26) 

where 

] (5.27) I- = Io d ~ e - ~  [% g(fid-7r-7 - ) - - dv g(Fd-7r-7+) . d7+ 03 

‘do 

In Eq. (5.26) the Fock function is expanded in terms of the residues at wl(t)=O 

(see Eq. (4.17)l Eq. (5.27) can be evaluated by the same method as used in 

Eq. (5.20). 

, a a  d d 3 +2 i s in$  
- -  I- 

‘do m32 F + sin F ~ ]  
(5.28) 
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exp(i(kR+MtJ($ +Pd-b,)} 
' Fx M w i ( t s )  s=l 

a a a(C ) =  
do 2k [ l+sinfbdI3 

d (5.29) 

The phase term of Eq. (5.29) shows a new creeping wave contribution 

traveling in the clockwise direction, which appears to be due to diffracted fields 

of the incident plane wave e by the edge at 9 = P,-T, but this edge 

is in the shadow region. The only incident waves at the edge in the shadow region 

ikR cos (j?,-~) 

a r e  creeping waves launched from the upper and the lower shadow boundaries. 

Therefore, the proper interpretation of the term exp cos (9 -T)} in Eq. (5.29) d 

is necessary. Also we need the proper choice of either one o r  both of two incident 

creeping waves as the source. Suppose Eq. (5.29) represents diffracted fields of 

the incident creeping wave from the upper shadow boundary. Then the creeping 

waves, which a r e  diffracted fields of the incident plane wave at the upper shadow 

boundary, and o(E ) will have the same phase, and these two a r e  indistinguishable do 

(see Section 5.5). Furthermore, the creeping wave due to the diffraction at the 

shadow boundary is of order k-1/3, and this term is dominant compared to that 

of Eq. (5.2) which is of order k-l. So o(c 

fields of the incident creeping wave from the lower shadow boundary (see Section 

) must represent the diffracted do 

5.5). 

Using the proper interpretation of the Fock function as a physical optics 

t e rm o r  a creeping wave term (see Section 4, I), exp { i m c o s  (gd-r)) term in 
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Eq. (5.29) is replaced by 

J 

2i M 

Therefore, a(c ) becomes 
do 3 

( - -  1 l - E e  - )(+cos gd - 2i sin ad) 
a a  (T(Cdo) = 

2k [1+sinf idI3 

'IT exp {i(kR+ Mts)(; + 6,- gl)+i(kR+ Mtp)(fid- 1) 
n u -  

s=l p=l  

(5.29)' 

(iii) Evaluation of o(Cdl) 

Near 8=8 =fi  - 9  'IT 
the argument of the Fock function c=M( - 2 -edl) d l  1 d-'ITJ 

is positive, and 

v = im cos(gl  -e) + e - r 2 
N 

d l  where T = O  -8  

Define 

v=i2M3 [l-singd]* 7 , 

e -i '1~12 V 

+ 2M3 E -singd] 7 =  for Imv>O , (5.31) 

and 
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5w 
2 

-i 
V e 

2~~ - sinpd] 
7 =  for  Imv<O.  

Substituting Eqs. (5.30) and (5. 31) into Eq. (5.4), o(C ) becomes d l  

(5.32) 

(iv) Evaluation of o*:(E::: ) do 

Near e=@$ = 8, -  fld, do the argument of the Fock function in @k, 

C=M(T+$ ) is positive, and 2 do 

Define 

V 
i 5.712 e 

7 =  
+ 2~~ [l-sbgd] 

for I m v > O ,  (5.34) 
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and 

P 

(5.34) 
e v  for  I m v < O  . 

Substituting Eqs. (5.33) and (5.34) into Eq. (5.5), the branch cut integral of o* at 

8 = gio becomes 
n L 

[cos 8,- 2i s in  fiJ iMt cos <fi - n) 1 1 - E  
a a d 

(- - - 
&(C. ) e - e  

do 2k- [l-sinfid] 

(5.35) 

Equation (5.35) represents fields diffracted by the edge in the shadow region. 

Therefore, by the same reason as the case of ,(Cdd of Eq. (5 .29,  the Plane 

wave term exp ikR cos (fi - n) 

t e rm (2iM) -' . T (M( - fid+ n)] exp { ikR (g - fid+ n)) . Substituting this factor 

into Eq. (5.35), we obtain diffracted fields of the incident creeping wave from the 

in Eq. (5.35) is replaced by the creeping wave 
d 

lower shadow boundary by the edge at fi=fi - 7 ~ .  d 
'l 

2 (-- 1 -) 1-E kos f id -2 i s in f i J  
a a  

2k [l-sinfidI3 

) ( ~ + f i  -fi )+i(Mt+ Mt )(T 3n - ad)} 

P (5.35)' s 2  1 d 

M2w1(t )w'(t ) 1 s  1 p  
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(v) Evaluation of CT::(C': ) 
do 

Near 8=8:: = jd - b  + ?T , the argument of the Fock function of &, do 1 d 

C=M(- +e:: ) is positive, and 2 do 
" 

where 7 = 8 -8:: 

Define 

do ' 

v= -im [I+ sin fid] 7 , 

57T 
i- 2 

+ 2~~ E + s i n f i d ]  

V e 
7 =  for Imv>O , 

and 
. "  
1- 2 

e v  
T =  - for Imv  < 0 .  (5.37) 

Substituting Eqs. (5.36) and (5.37) into Eq. (5.5), the branch cut integral of 0:: 

at 0 =e:: becomes do 

3 2 
)(cos 6,- 2i sin fi zr+fil -fid)+ikR cos fld 

M wi(ts) 

1 1 - E  

&:( c:: ) 'v a a 
(--- 

do 2k [,,sined] s= 1 

(5.38) 

), the fields diffracted by two 
" " 

When > b  - -  , @,# 5 and 6, # 2(fbd- 

edges a r e  given as 
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7r ikpl-i ;?: 
[dCd0) of Eq. (5.23) $- o(Cdo) of Eq. (5.29)' 

+ o(C ) of Eq. (5.32) + 0+(6&) of Eq. (5. 35)' 
d l  

+ e:: (0: ) of Eq. (5.38) + . . . . (5.39) 
do 1 

7r - -), inT-plane of Fig. 5-2 two branch cuts at the saddle point 2(@d 2 When 9,- 
8=8' = - @1 + ir - and the branch point of the mapping function 8=8 so 2 2 do 1 d 

=@ -$ +ir coin- 

d7 is not analytic any more near  8=8 , and g(@,-7 ) differs cide. In Eq. (5.20) do - 

f rom g(@,-~+) still in the second order term. Therefore, the saddle point con- 

tribution is dominant, and o(C ) of Eq. (5.23) disappears (see Appendix B). The 

other terms in Eq. (5.39) remain unchanged. 

specular reflection point and the position of the edge coincide, the specularly 

reflected field and the field diffracted by the edge are indistinguishable. The specularly 

reflected field remains unchanged in the first order approximation for high frequency. 

do 

Physically this means that when the 

ir 7r 5.3 Case 11. $, - 5 > fi1& 0 and @,$ - 2 

As the observation point moves across  the tangent l ine at the position of 

the circle-ellipse join, the argument of f M( - -6 )  near 8=8 

changes f rom a negative value to a positive value, and the argument of 

''(.(; +e,) near e=w do = 

value. 

respect to those due to the saddle points remain unchanged as in Case I. 

= pl-gd+ir 3 I do 

changes f rom a positive value to a negative 

The relative position of the branch points due to the mapping function with 
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(i) Evaluation of o(Cdo) 

T 
Near 8=8 = fi - @  + T , the argument of the Fock function, P=M(F -Ode) do 1 d 

is positive o r  equal to zero and in the integrand of (T of Eq. (5.4) 

“-im [ 1  9 -p d + T  F- ~ o s ~ ~ ] + i k R [ l - s i n ~ ~ ] ~  T (5.40) 

where T = 8-8 (note the difference between Eq. (5.40) and Eq. (5.17)). 
do 

Define 

and 

v = i m  1 l - s i n p d ] T  , 

for I m v > O  , 

for I m v < O  . 

(5.41) 

Substituting Eqs. (5.40) and (5.41) into Eq. (5.41, the branch cut integral of (T at 

8=8 becomes do 

(ii) Evaluation of &(e:% ) do 

Near e=@:% = pl-pd, the argument of the Fock function, ~ = M ( F  +e), is 
7r - 

do 
4 T 7r 

1 d 2  almost equal to zero when p1 - gd - 5 , and is negative when 9 < fl - - . 
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7T Therefore, when fi < fi - -  the residue series of the Fock function 

in Eq. (5.35)’ should be replaced by the asymptotic form of the Fock function for 

1 d 2 ’  

the negative argument, 

( -  1 - l - E O  -1 lcosfid-2isinp 
,.,a a d - o::c( c:: ) - 

do 2k [1 - s i n p d I 3  

a3 exp{i(kR+Mt )(z-fid)+ikRsin(fi l-f$d-7r)} 
P 2  
M w t ( t  ) 

1 P  p=l  
(5.43) *> :  

o(c )’ o(C ) and &:(CY ) are the same as those given in the previous section, 

and the fields diffracted by two edges are 

do d l  do 

1 Y + o(Cdl) of Eq. (5.32) + d.Y& )(see the 

next paragraph) + &(C::: ) of Eq. (5. 38) 

do 

do 
7T 7r +...] for  p d - ~ & f i l > O  and p d > 5’ 

(5.44) 
7T - 

In Eq. (5.44) O;::(C$~) is given by Eq. (5.35)’ when plcL fi, - 

when f i l <  $ - 
, and by Eq. (5.43) 

7r 
d z *  

5.4 Case III. 7r > 6, > 0 and pd=  y IT . 

7r 
When fi becomes - the position of the circle-ellipse join lies at the d 2 ’  

shadow boundary, and the relative positions of the branch points of the mapping 

function with respect to those due to the saddle points are changed in Fig. 5-2 and 
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3 
d l =  1 2 Fig. 5-3. In fact, 8 

and &io = fl, - 

branch cuts at 8 = 8  and 8=8 in  Fig. 5-2 coincide, and two branch cuts at 

fl - --(Eq, (5. 10)) becomes equal to os1(Eq. (5 .9)) ,  

(Eq. (5.14)) becomes equal to 8:kl (Eq. (5.12)). Thus, two 
7T 

d l  s l  
- 
e* and 8=W in Fig. 5-3 coincide. 

do so 

(i) Evaluation of o(Cdo) 

dCdo)  is the same as that of Eq15.23), and substituting fl = - into 7T 

d 2  

Eq. (5.23),  o(C ) becomes 
do 

2 
(- - -)singl 1 1 - E  
a a  ex4-ikR sin fl + i +} . 

d C d y  - k  COS@^] 3 
1 

(5.45) 

(ii) Evaluation of o(Cdd 

In Case I of Section 5 .2 ,  the position of the circle-ellipse join at fl=fl - 7 ~  d 

was in the shadow region and therefore was unable to be directly reached by the 

7T 
incident plane wave. But in the case of @ = -, this edge lies at the shadow 

boundary. So Eq. (5.29) is valid, and substituting fl = - into Eq. (5.28),  a(Cd0) 
d 2  

7T 

d 2  

is obtained. 
n 

(5.46) 

( - -  1 l -EL - ) 2 \I;r exp {i(kR+Mt )(r-fl1) - 
a a  S 

k8 s=l M wi(ts) dCdJ ee 

(iii) Evaluation of a(C,,) and &(C:h$ 

Both branch cuts at &ed1 in Fig. 5-2 and at e=& in  Fig, 5-3 coincide do 

and @:(E::( ) a r e  indistinguishable a( ‘dl) do with branch cuts due to saddle points. 

from contour integrals of saddle points (see Appendix B). 
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(iv) Evaluation of &(CY ) do 

&(C::: ) remains the same as Eq. (5.38) of Case I, and substituting 
do 

7r 
$,= in Eq. (5.38), d:(C;: ) becomes 

do 

2 
(- 1 -- 1 - E  00 $7 exp {i(kR+Mt )(7r+al)+i } 

. (5.47) 
S 

M w;(ts) 
&( c::: ) = a 

s= 1 do k8 

7r 
So when 7r > $ > 0 and p) = -, the edge-effects are: 1 d 2  

Y I 

+ CT:;:(C:: ) of Eq. (5.47) + . . . 3 . (5.48) do 

lr lr 
5.5 Case IV-A 9, lr and $ = -, and Case IV-B $ , e0  and $ = - d 2  d 2  

lr 
(i) CaseIV-A: $,&n and $ = d Z  

71 
the argument of the Fock function, c=M( - -6) 

= $1- $d+ '> 2 Near 8=8 do 

is almost equal to zero. Near fJ1 e lr 

-kRsin$l=kR($1-7r)+- M3 (P1-7r)  3 . 
3 (5.49) 

-ikR sin fl1 
Using the relationship of Eq. (5.49), the physical optics t e rm s in$  e 

in Eq. (5.45) is replaced by the Fock function 

1 

(5.50) 
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7r When g1=7r and 6 = -, the edge-effects a r e  the same as Eq. (5.48) except 

o(Cdo) which is given by Eq. (5.50) instead of Eq. (5.45). 

d 2  

7r 
(ii) Case IV-B: 6, "-0 and 6 = d Z  

When 6, '0 the observation point is near o r  in  the shadow region, 
. I  

(see Eq. (5.9)). 
7r 7r $1 

and the saddle point lies a t  8= 8 

So in Fig. 5-2, the two branch cuts at v(8=8 

= -+PI instead of 8' = - +- 
so 2 so 2 2 

) and at v(8=8 =$ -9  + 7r) coin- so do 1 d 

cide, and o(C ) is indistinguishable from the saddle point contribution (see do 

Appendix B). 

Physically, this means that as the observation point approaches the 

shadow region, the specularly reflected field disappears and a diffracted field 

at the shadow boundary appears, and this field is indistinguishable from the field 

diffracted by the edge in the forward direction. 

gd= 7 ,  the edge-effects are the same as those of Eq. (5.48) except o(C ) which 

Therefore, when 6 0 and 1 
7r 

do 

disappears. 

5.6 Summary of the Results 

In this section, various expressions of the diffracted fields obtained in 

this chapter a r e  tabulated for convenience. 

The scattering body investigated is constructed by smoothly joining a 

semi-circle of radius a and a semi-ellipse of minor axis 2a and eccentricity 

E, At the two positions of the circle-ellipse join (6 = 6, and 9 = Fd - 7r), curvatures 
_. 

2 
respectively (see Fig. 5-4). of the circle and the ellipse a r e  - and - 1 - E  1 

a a 
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-> ray diffracted by the upper edge 

---> ray  diffracted by the lower edge 

FIG. 5.4: VARIOUS RAYS DIFFRACTED BY EDGES 
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For simplicity, the fields diffracted by both edges with discontinuities 

in curvature a r e  denoted a s  

ikp -i- P 

cJ 
1 4  

(5.51) 

i8 1 
where gl = ple  is the observation point. o is given the following Table V-1 

for various cases. 

TABLE 5-1: AMPLITUDES O F  FIELDS DIFFRACTED BY EDGES 

I, 'd Reference Case No. o 

Eq. (5.39) (5 +o +o +o +o 1 2 3 4 5  

I 

Eq. (5.39) o +o +o +o 2 3 4 5  

0- +o +o +o +o 6 2 3 7 5  Eq. (5.44) 

P 
'd> II 

o +o +o +o +o 6 2 3 4 5  Eq. ( 5.44) 

P >  8 ,  > 0 o +cJ +o 8 9 10 Eq. (5.48) m 

IV-A o +o +o 11 9 10 
Section 5.5 

P &= IV-B (3 + o  9 10 
Section 5.5 
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where 
Q 

( - -  1 1-EL - ) ( ~ o s @ ~ - 2 i s i n @ ~ ) c o s ( @  
a a  

(see Eq. (5.23)) 

+ sin 8, 
( T =  1 

2 
1 1-E 

(- - -)(cos f~, - 2i sin @ )?T 
a a d .~ 

3 ( T =  

k2( 1 + sin 6,) 2 

-g1+ ad+ f ) + i(kR+ Mt )(@ - L)) 
P d 2  

2 
M wi (ts) w'(t  

1 P  
L - I f t  s=l p= 

(see Eq. (5.29)') 
n 
L 

) ( -cos gd+ 2i sin ad) 1 1-E (- -- 
a a  

1 1-/ 
a a (- - -) (cos 6,- 2i sin 

O4 = k2 (1   in@^]^ 

2 
1 1-E 
a a 

(- - -)(cos 6, - 2i sin @J(F 
(T- = m 

(see Eq. (5.35)') 

5 3 
k2( 1 + sin fl,) 

(see Eq. (5. 38)) 
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2 
(- 1 - 1-E  - (-cos $,+ 2 i  sin@d) \In 
a a 

3 O6 = k2(1 -s in$ ) 
d 

a, expb(kR+Mt )(-a +@ - - )  7r + ikRcosfid 
1 s l d 2  

I 
k2( 1 -sin ad)” 

M w’ (t 
p= 1 1 P  

1 1-EL 
(- -- ) i s ing  
a a exp{-ikFt sinal)  

k (l-COS@l) (see Eq. (5.45)) 
O8= - 

2 

1 1 1-E 
(- a - -)i a a, exp {i(kR+MtS)(-fll+ n) 

O9= - k8 s=l Mw;(ts) 
(see Eq. (5.46)) 

2 2 exp +(kRfMtS)(al+ 
1 1 - E  
a a (- - - ) i G  

k8 s=l M w; ($1 
( T =  10 

2 1 1 - E  I - - - \  
(see Eq. (5.47)) 
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CHAPTER VI 

DISCUSSION 

In this chapter, the physical meaning of the results obtained in Chapter 5 

and the limitation of validity of these results are discussed, as well as the possi- 

bility of extending the present method to the case of Neumann boundary condition 

and diffraction by a wedge. It is difficult to give the precise amplitudes of the 

diffracted fields fo r  a n  arbitrary jump in  the curvature, so  some of the remarks 

a r e  conjectural. 

Let us first discuss the diffracted fields in the case when the point of 

discontinuity in curvature l ies in the illuminated region. 

From Case I in the Table 5-1 of Section 5.6, it is shown that diffracted 

fields a r r ive  at the observation point p -1 

waves launched in both tangential directions at the edge and circling around the 

scattering body (see Fig. 5-4). 

both as a direct ray and as creeping 

1 The contribution of the direct ray from the discontinuity is given by CJ 

of Section 5.6 (or Eq. (5.23)). 

(6.1) 
2 

(Note that the point of discontinuity is taken as the origin, and - and - 1 1 -E 
a a 

1 
and - , respectively. ) a r e  replaced by - 1 

R1 R2 
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\ 
\ 

FIG. 6.1: DIRECT RAY FROM THE DISCONTINUITY 

(16) 
Eq. (6.1) is s imilar  to that obtained by Weston for the case of the Neumann 

boundary condition. 

given as ~ + C O S ( @ ~ - ~ P ~ )  -cosfll instead of the te rm (cos@ d -2isinPd)  COS(@^-@^) 

in Eq. (6.1). 

The difference is that in Weston's result the numerator is 

When the observation point moves across  the tangential l ine such that 

?r d, < fld - 
by the discontinuity reach the observation point as creeping waves, which are 

, Case I1 in Table V-1 of Section 5.6 shows that the rays diffracted 

given by CJ of Section 5.6 as 6 
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(- 1 - - ) ( -cos@ 1  sin$^) 
d 

3 
Rl R2 ikpl-i - 4 

2k( 1 -sin 6,) 

\ 
\ 

/ 
/ 

/ 

' \ /  \ 

\ 
\ 

R t  
A 

\ 
\ 

FIG. 6.2: THE CREEPING WAVE LAUNCHED BY THE DISCONTINUITY 
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In Eq. (6.2) R is the radius of curvature of the transformed circular boundary and is 

given as 
2 

8 
E 

R = a ( l +  - )  by Eq. (4.23) . 

Suppose that we transform the given boundary of the scattering body into another 

contour (instead of a circle) such that a little away from the discontinuity, the trans- 

formed boundary is identical to the original boundary. Then the radius R in the 

second bracket of Eq. (6.2) would have become R2. 

Actually, this creeping wave launched by the discontinuity is propagating 

. Therefore, we may conjecture that 
1 along the boundary whose curvature is - 

the diffraction factor in the second bracket of Eq. (6.2) is modified by higher order 

iterated terms of the solution of the integral equation. (Note that it was  shown in 

Section 2 . 3  that the iterated terms represent the effects of 1 %  - I on the propaga- 

tion of the radiated and the scattered fields. Also see Weston's works 

With this consideration in mind R=R 

R2 

(IS), (16) 

is substituted in Eq. (6.2). 2 

-i- 7 r 1  (- - -)(-cos 1 b + 2 i s i n $  ) d d 1 y e i k P l  4 R1 R2 
3 2k (1 -sin 6,) 

1/3 
s=l 

When z2bd-7rJ the specular reflection point and the point of discontinuity 
1 

in curvature coincide, and the specularly reflected field and the field diffracted by 

the discontinuity become indistinguishable. The study in Section 5. 2 and Appendix B 
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shows that in such a case the field diffracted by the discontinuity disappears, in 

first approximation for high frequency. Therefore, we may conjecture that when 

6, Lf 2Pd- n the specularly reflected field can still be obtained by the method of 

physical optics. 

Next let us consider the case in which the point of discontinuity in curva- 

ture  lies at the shadow boundary. Then the incident wave impinges tangentially 

on the curved boundary with a discontinuity in curvature (see Fig. 6-3). Again 

there are contributions of a direct  ray  and the creeping waves launched at the 

point of discontinuity in curvature. 

7T When n >  fll > 0 and fi = the dominant te rm of the edge-effects is d 5’ 
71 the direct  ray  which is given by Eq. (6.1). Substituting 9 = - in Eq. (6. 1) Tf d 2  d 

becomes 
1 1 

3n (- - - )sinjdl 
R1 R2 ikpl- i - 4 

k{l-cosfll) 
(6.3) 

When 9 is greater than n, the diffracted ray  reaches the observation 1 

point only as a creeping wave, and with the same argument as that of Eq. (6.2),  

the diffracted ray i s  given by the modified form of CJ 

Eq. (5.50)). 

of Section 5.6 (or  
11 

s= 1 
8k 

(6.4) 
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7r 
FIG. 6.3: THE RAY DIFFRACTED BY THE EDGE; fJ1 > 7~ AND fJd= 

. 

When the point of discontinuity lies at the shadow boundary and the 

observation point is near the shadow boundary o r  in the shadow region, the two 

creeping waves launched by the shadow boundary and by the discontinuity in curva- 

ture  become indistinguishable. The study of Section 5.5 and Appendix B shows 

that in such a case the effect of the discontinuity in curvature disappears in the 

first order te rm of the asymptotic series for high frequencies. 

When the point of discontinuity in curvature lies in the shadow region, the 

incident creeping wave from the shadow boundary can be locally treated as a plane 

wave incident along the tangential direction. The amplitude and phase of this plane 

wave are taken to be the same as those of the incident creeping wave near the edge. 

Therefore, the edge-effects can be obtained by Eqs. (6.3) and (6.4), provided 

that the amplitude and phase te rms  of the incident creeping wave are multiplied to 

the right-hand side of both equations. 

Let us discuss the validity of the amplitudes of diffracted rays given above 
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f--- -I - - I . - t - . l * . ,  
LUI all c z l u i u a s y  difference of the two curvatures at the discontinuity. As discussed 

, 
in Chapter 4 and 5, the amplitudes of rays  diffracted by the discontinuity are 

determined by the amplitude of the incident wave and by the behavior of the local 

mapping function near the discontinuity. But since the precise local mapping 

function for the arbitrary edge is not easily obtainable, we have assumed the 

scattering body to  be almost circular (see Section 4.2). This fact, in turn, com- 

a pelled us to assume that the difference between a and - be small  for the 
2 1 -E 

particular model of the scattering body considered in Chapter 5. So the results 

of Chapter 6 for the amplitudes of rays  diffracted by the discontinuity in curvature 

can be improved when the more accurate local mapping function, which is valid 

for arbi t rary difference of two curvatures, becomes available. Still we may 

conjecture that the local behavior of the approximate mapping function obtained in 

Section 4.2 gives a reasonably accurate local mapping function for an arbitrary 

difference of the two curvatures. So the results of Eqs. (6. l), (6 .2)  and ( 6 . 3 )  may 

be valid for this case. 

We can conclude from the present analysis that the effect of the discontinuity 

-1 in curvature for the far zone scattering field is of the order  of k (kp1)-@ t imes 

the amplitude of the incident wave at the discontinuity in curvature. In contrast, 

it is well known that the effect of a kink is of order  (kp )-@. In general, the 

effect of the discontinuity in the n-th derivative of the tangent is of order  

k-n(kp,)-'2, because the order  of singularity of the local mapping function near 

the edge with a discontinuity in the n-th derivative of the tangent is lowered by the 

1 

factor n (see Section 4.2). 
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The extension of the present method to the case of a wedge type singularity 

is not easy. The difficulty is due to the fact that in this case lzl near the 

singular point is either infinite o r  zero, no matter how close the transformed 

contour is to the original contour. Therefore, the first te rm of the iterated series 

may not be sufficient (see Chapter 2). Rice(17) showed numerically that the iterated 

series converges after the second iteration for the low frequency scattering problem 

by a kink. Apparently there is yet no analytical proof of convergence of the iterated 

series. 

Extensions to the Neumann boundary condition are possible, but one should 

be even more careful, because now the normal derivative of the scattered field is 

given on the boundary instead of the scattered field itself (see Eq. (2.6)). Therefore, 

one must transform a normal derivative of the given function through the mapping 

function F(z) as 

in place of Eq. (2.11). For the Dirichlet boundary condition, the boundary value 

is continuously transformed as long as the mapping function itself is continuously 

defined on the boundary. But for  the Neumann boundary condition, the derivative 

of the mapping function must be continuous in order to transform the boundary 

value continuously. 
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1 '  $ 4 6  -e  

Changing the contour C into C and using the following 2 1 

+iv 5 n 377 -iv - n 
2 

iv - 
- e  2 2isinvn. e = e  

aG 
an 
- 

r=R 

66 

i 

T H E  U N I V E R S I T Y  O F  M I C H I G A N  
5780-6-T 

APPENDIX A 

ASYMPTOTIC FORM OF - aG FOR HIGH FREQUENCY 
an 

In this Appendix, the normal derivative of the Green's function for a 

circular cylinder is asymptotically evaluated for  high frequency in terms of the 

Fock function. 

The Green's function which satisfies the Dirichlet boundary condition 

on a circular cylinder with radius R is given by Eq. (3.12). The series of 

Eqs. (3.12) is slowly convergent for  a large kR. In order to obtain more rapidly 

converging series for kR>> 1, the Watson transformation is applied to Eq. (3.12). 

n= -03 H(l) (kR) n an 1 r=R 

I,' 
(A-1) 

e 
4nR dv Hv (1) (kR) sinv n 

+ c 2  

where 

1 '  $ 4 6  -e  

Changing the contour C into C and using the following 2 1 

n 377 -iv - n 
2 

iv - 
- e  2 +iv 5 

2i sin 1/71 e = e  

Eq. (A-1) becomes 

aG 
an 
- 

r=R 
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s i 1 = - -  
2 27rR 

c1 

Im . V 

iv - 7r 

e cosv($-n) 
dv 

(kR) 
V 

3n 
W -  

e cosv(l+9-7r) 
du 

sinvaH(l) (kR) . 
V 

F1G.A-1: THE CONTOURS C1 AND C2 

(A-3) 

(A -4) 
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For the evaluation of I the contour C can be changed into the contour 

of Figure A-2 if  ?r/2 5 @ 5 32 (see Gorianov's paper 

1' 1' 
n ( 9) 

). 

Using the asymptotic formula given by F ~ c k ( ~ )  in Eq. (A-3) 

(A-5) 

where 

v=kR+Mt  

kR 113 M=(-) 
2 

and 

wl(t) is an Airy function, 

we obtain 

n 

Im v 
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T( c )  is called the Fock function and is given by the following equation 

(A-7) 

The property of the Fock function is given by Eqs. (4.17), (4.18), and (4.19). 

When 7r/2 >rc/  > 0, I can be changed into another form as discussed in 
1 - 

Section 4 . 1  

Using Eq. (4.18) and (A-7), I can be written as 1 

ik -ikR cos $ ki I - - c o s + e  +-e  
1 2  4M 

7T 
for O<$<-. (A -9) - 2  

For  the evaluation of I 

Using the same method as I and the following relationship 

the contour C can be changed into r for all $ . 2' 1 

1 

we obtain 

3 
2 

ikR( - 7~ - $+ 2n7r) 
+ e  (A-10) 
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APPENDIX B 

THE SADDLE POINT CONTRIBUTION 

In this Appendix, one of the branch cut integrals due to the saddle points 

in Eq. (4.12) is asymptotically evaluated for both Case I ( 7 ~  >_ fl, > 0) and Case II 

(fl = 0). This integral is identified as the contribution of specularly reflected 

fields for Case I and as that of fields diffracted by the shadow boundary for Case 11. 

1 

Equation (4.12) is given as 

Equation (B-1) is obtained by inserting 8 = fl 

the far field (see Eq. (4. 14)). 

for the inverse transformation of 
1 1  

For  our particular model of the scattering body in 

Chapter 5 (see Fig. 5-1)), g(-8+?r+fll) is given by Eq. (5. 1). 

By Eq. (5.9) one of the saddle points is found at 

for Case I 61 7T e = e f  = - + -  
s o  2 2 

(B -2) 
7T e = e  = f ~ , + ~  for Case 11 . so 

The saddle contribution of Eq. (B-1) for Case I and Case I1 can be written as a 

branch cut integral near this saddle point as discussed in Section 4.1 (see Fig. 5-2). 

o r  C 
so 
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Case I: n 2 p 1 > 0  

5 becomes a negative quantity. Using $1 a Near the saddle point 8= - + - 2 2 '  

the asymptotic form of the Fock function for the negative argument (see Section 4.1) 

Y 
v becomes 

4 2 ~ 61 <iZkRsin-+ 7 =s in -  2 2 

where 

Define 

$1 2 v=-ikR sin - 7 2 

for  Im v > O  

i- 
e 4 J2 

for  Im v < 0 . 

(B-4) 

03-51 

If 6, is not near 2(fl 

from the point of discontinuity in curvature (see section 5.21, g( -8 -k - + fb ) is 

analytic near this saddle point. Considering only the dominant term for kR>> 1, 

a ) such that the specular reflection point is far d- 
a 
2 1  

aJ u becomes 
S 
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4 
kR 7r 4 2 

-i2kR sin- 
S : - cos ( -+ - )e  s 2  2 2  

7r 7r 
When gl=2(gd- ), the branch point of g(-8 + 7 + 9 ) coincides with the saddle 

point - - However, since the first derivative of g( -e+ - + b  ) with respect 

to 8 is a continuous function near this branch point (see Section 4.21, we obtain 

the same result as Eq.(B-6) even in the case of fl e 2(gd- 2). 

1 
@ l + n  7r 

2 2 '  2 1  

7l 

m 1 

By Eq. (4.7) and (B-6) the contribution 

becomes 

p1 'IT of the saddle point at e=-+ - 2 2  

Eq. (B-7) represents the specularly reflected field for both cases  when the specular 

reflection point and the point of the discontinuity in curvature are far apart, and 

when they coincide. 

Case II: 6, o 

7r 7r 4 In this case the saddle point lies at 8  so=^+ 6, instead of 8 = -+- . 
so' 2 2 

7r 
Near 8= - +pl ,  the argument of the Fock function becomes zero as 9 approaches 2 1 

. 
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7r zero. So near 8 = -  2 + 4  

where 

Let 

where 

3 
3 7  v = i M  - 

3 

for Im v > 0 
g vV3 

p J3 
7 =- 
+ M  

for Im v < 0 7 =- 
- M  

. 7 r  

7r 7r 7r g(-8+7r+f11) is analytic near  8= -+b  unless fl = When fl = the point 

of discontinuity in curvature l ies  a t  the shadow boundary, and two branch cuts a t  

8= - + fi 

With the same argument as Case I (i. e. the derivative of the g( -8 + 7r+ fl ) near 

8= 8 is continuous), for Case 11, becomes 

2 1  d F .  d 5  

7r and a t  8=8 = @  -fl + n  coincide (see Case IV-B of Section 5.5). 2 1  do 1 d 

1 

do S 

(B-10) 
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for  both cases when the point of the discontinuity and the shadow boundary are far 

apart and when they coincide. Here I is given as 
S 

3 
-X 

3 
mexp(i- 3n 

(B-11) 
2 Ai( t) -i(kR+Mt)gl 

- ---s dt- 
M JF r wl(t) e 

Here Ai(t) = - is an Airy function. By Eq. (4.7) and (B-l l ) ,  
2i  

I the saddle point contribution n at 8 = - + P l  for Case II becomes 
2 

v 
(B-12) 

When fl becomes negative (B-12) can be expanded as a residue series 
1 

V 

. 

(B-13) 
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Equation (B-13) represents the contribution of creeping waves which are diffracted 

near the upper shadow boundary. 

Equation (B-12) and $-13) hold both when the shadow boundary and the 

point of discontinuity in curvature a re  far apart  and when they coincide. 

. 
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ABSTRACT 

The problem of finding the scattered and diffracted fields of a plane wave 

normally incident on an  infinite cylinder with arbitrary c ros s  section presents 

considerable difficulty. The mathematical problem involves finding a solution of 

the scalar wave equation which satisfies both the boundary condition at the surface 

of the cylinder and the radiation condition a t  infinity. 

'%is report describes a boundary perturbation method, based on conformal 

mapping, which can be used to obtain an approximate solution. Firstly, the domain 

external to the scattering body is conformally mapped into another domain external 

to a geometrically simpler cylinder for which the Green's function satisfying the 

prescribed boundary condition is known. Such a conformal transformation pre- 

se rves  the right angle between the direction of propagation of a wave and i ts  wave- 

front. Furthermore, the characteristics of the geometry of the boundary a r e  

reflected in the behavior of the mapping function there. Secondly, a Fredholm 

integral equation of the second kind governing the scattered field is formulated. 

The solution of this equation can be obtained by the method of successive approxi- 

mation, provided that both original and transformed boundaries have continuous 

tangents and that the distance between the two curves is sufficiently small  i n  
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comparison with the wavelength. This integral equation method proves to be 

particularly effective in dealing with fields diffracted by discontinuities both 

in curvature and in derivatives of the curvature, and in showing the effects of 

smooth, shallow corrugations of the scattering body. Various expressions for 

the fields diffracted by the discontinuity in curvature are obtained by varying 

both the observation point and the position of the discontinuity in curvature in 

reference to the direction of incidence. 

The attention in this report  is primarily confined to the case of Dirichlet 

boundary condition. 

of Neumann boundary condition is also briefly discussed. 

The extension of the conformal mapping method to the case 
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